Name $\qquad$ Mark Prior

Date $\qquad$
$\mathcal{T A}$
Carlos Zambrano
Section \# 52420

Title: "Are the Densities of Coke and Diet Coke Different?"

Objective: To measure and compare densities of Coke and Diet Coke. To evaluate precision of the volume measurements performed with a 5 ml volumetric pipette, a 10 ml graduated cylinder, and a 50 ml burette. To verify that density is an intensive property.

Sample: $\quad$ Diet Coke
Sample temperature: $\quad 22.5^{\circ} \mathrm{C}$

Part 1. "Are the Densities of Coke and Diet Coke Different?"
$\mathcal{M y}$ data

|  | Volumetric Pipette |  | Graduated Cylinder |  | Burette |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Trial 1 | Trial 2 | Trial 1 | Trial 2 | Trial 1 | Trial 2 |
| Mass of Empty <br> Be aker (g) | 28.4576 | 36.1582 | 32.0014 | 37.2285 | 46.2828 | 30.6521 |
| Mass of Beaker + <br> Liquid Sample (g) | 33.4530 | 41.1399 | 36.6603 | 42.0284 | 51.1820 | 35.5737 |
| Mass of Liquid <br> Sample (g) | 4.9954 | 4.9817 | 4.6589 | 4.7999 | 4.8992 | 4.9216 |
| Volume Delivered <br> (ml) | 5 | 5 | 5 | 5 | 5 | 5 |
| Calculated <br> Density (g/ml) | 0.9991 | 0.9963 | 0.9318 | 0.9600 | 0.9798 | 0.9843 |

( $\mathcal{N O T E : ~ N u m b e r s ~ l i s t e d ~ i n ~ t h e ~ T a b l e ~ a b o v e ~ s h o u l d ~ b e ~ u s e d ~ a s ~ a n ~ e x a m p l e ~ O N L Y . ~ T h e y ~ d o ~ n o t ~}$ represent a real set of data.)

Sample Calculation for Trial 1:

Mass of liquid sample $=33.4530 \mathrm{~g}-28.4576 \mathrm{~g}=4.9954 \mathrm{~g}$
$\mathcal{D e n s i t y}=\frac{m}{\mathcal{V}}=\frac{4.9954 \mathrm{~g}}{5 \mathrm{ml}}=0.9991 \mathrm{~g} / \mathrm{ml}$

Name $\qquad$ Mark Prior

Date $\qquad$
$\mathcal{T} \mathcal{A}$ Carlos Zambrano

Section \# $\qquad$

Results from the combined class data

| Sample | Average Density $\pm$ Standard $\operatorname{Deviation~}(\mathrm{g} / \mathrm{ml})$ |  |  |
| :--- | :---: | :---: | :---: |
|  | Pipette | Grad. Cyl. | Burette |
|  | $1.038 \pm 0.002$ | $1.02 \pm 0.01$ | $1.035 \pm 0.006$ |
| Diet Coke | $0.997 \pm 0.007$ | $0.98 \pm 0.02$ | $0.995 \pm 0.004$ |

( $\mathcal{N O T E : ~ N u m b e r s ~ l i s t e d ~ i n ~ t h e ~ T a b l e ~ a b o v e ~ s h o u l d ~ b e ~ u s e d ~ a s ~ a n ~ e x a m p l e ~ O N L Y . ~}$ They do not represent a real set of data. Note the use of the significant figures.)

Part 2. "Does the size of the sample affect the density?"

Sample: $\quad$ Diet Coke
Volume assigned: 20 ml

|  | Trial 1 | Trial 2 |
| :---: | :---: | :---: |
| Mass of Empty <br> Be aker (g) | 29.0454 | 32.4122 |
| Mass of Beaker + <br> Liquid Sample (g) | 48.9260 | 52.3385 |
| Mass of Liquid <br> Sample (g) | 19.8806 | 19.9263 |
| Volume De livered <br> (ml) | 20 | 20 |

( $\mathcal{N O T E :}$ Numbers listed in the Table above should be used as an example ONLY. They do not represent a real set of data.)

| Sample | Density $(g / m l)$ determined <br> from the plot |
| :--- | :---: |
| Coke | 1.033 |
| Diet Coke | 0.995 |


| $\mathcal{N a m e}$ | MarkPrior |
| :--- | :--- |
| $\operatorname{Carlos}$ Zambrano |  |

Date 09/14/05
Section \# 52420

Discussion Questions:

Answer Discussion Questions listed at the end of the Procedure for Experiment 1.
(Example: The average densities and the ir corresponding standard deviations calculated from the class combined data for both Coke and Diet Coke are listed in the Table above. Briefly, the following sets of data were obtained
for the Coke sample: $\quad 1.038 \pm 0.002$ (pipette)
$1.02 \pm 0.01 \quad(g r a d . c y l i n d e r)$
$1.035 \pm 0.006$ (burette)
for the Diet Coke sample: $0.997 \pm 0.007$ (pipette)
$0.98 \pm 0.02 \quad$ (grad.cylinder)
$0.995 \pm 0.004$ (burette)

I would expect the density of Coke to be higher than the density of Die $\begin{aligned} & \text { Coke due to its }\end{aligned}$ figher sugar content..)
$\mathcal{N O T E}:$ Attach a print-out of your data table and three graphs to your report.

